首页 > 留学知识库

问题: 高二数学

已知实数x,y满足x不等于y,且lgx+lgy=0,试求t=(x^3+y^3)/(x^2-y^2)的取值范围。

解答:

因为x≠y,且lgx+lgy=0,所以:
x>0,y>0,且x、y≠1
则:lgx+lgy=0
===> lg(xy)=0
===> xy=1
而,t=(x^3+y^3)/(x^2-y^2)
=[(x+y)(x^-xy+y^)]/[(x+y)(x-y)]
=(x^-xy+y^)/(x-y)
=[(x^-2xy+y^)+xy]/(x-y)
=(x-y)+[xy/(x-y)]
=(x-y)+1/(x-y)
≥2(当x-y>0时)
或者≤-2,(当x-y<0时)
所以,t的取值范围是:(-∞,-2]∪[2,+∞)