问题: 关于高一数学集合的问题
设a,b属于z,E={(x,y)|(x-a)(x-a)+3b<=6y}, 点(2,1)属于E,但点(1,0)不属于E,(3,2)不属于E,求实数a,b的值。
解答:
方法1:
因为(1,0),(3,2)不属于E
(2,1)属于E
带入条件得
6>=(2-a)^2+3b
(1-a)^2+3b>0
(3-a)^2+3b>12
即(1 2,1 3相加)(平方差公式)
a<-0.5
a>-1.5
即a=-1 b=-1
方法2:
集合E表示的是抛物线y=(x-a)^2/6+0.5b上及抛物线上面的部分
点A(2,1) B(1,0) C(3,2)在直线y=x-1上
点A属于集合E,点B、C不属于集合E,即
1.抛物线与直线有一个交点(2,1)
得a=b=-1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。