首页 > 留学知识库

问题: 数学有界问题

设函数f(x)和g(x)在d上有界,证明函数f(x)+g(x)与f(x)g(x)在上d也有界。

解答:

证:由题意,对于任意x属于d,存在M1,M2>0,使得
|f(x)|<=M1
|g(x)|<=M2
取M3=M1+M2,M4=M1M2
则|f(x)+g(x)|<=|f(x)|+|g(x)|=M1+M2=M3
|f(x)g(x)|=|f(x)||g(x)|<=M1M2=M4
即函数f(x)+g(x)与f(x)g(x)在上d也有界