首页 > 留学知识库

问题: 关于三角函数

函数f(x)=2sin(πx/2+π/5),若对任意x∈R 都有f(x1)<f(x)<f(x2)成立,则│x1-x2│的最小值为
请写出详细的解题过程 最好有解题思路

解答:

-2 <= f(x)=2sin(πx/2+π/5) <= 2
f(x)=-2时:πx/2+π/5 =2nπ -π/2, x =4n -7/5
f(x) =2时:πx/2+π/5 =2mπ +π/2, x =4m +3/5
==> |x1-x2| =|(4m +3/5)-(4n -7/5)| =|4(m-n) +2| >= 2
==> 最小值 =2
(条件应为:f(x1)<= f(x)<= f(x2),否则没有最小值)