问题: 求不定积分
∫(x+1)/(x^2-x+1) dx
解答:
解:由于(x^2-x+1)`=2x-1=2(x+1)-3
所以x+1=(1/2)[(2x-1)+3],故
∫[(x+1)/(x^2-x+1)]dx
=(1/2)∫[(2x-1)+3]dx/(x^2-x+1)
=(1/2)∫(2x-1)dx/(x^2-x+1)+(3/2)∫dx/(x^2-x+1)
=(1/2)∫(x^2-x+1)`dx/(x^2-x+1)+(3/2)∫dx/[(x-1/2)^2+3/4]
=(1/2)∫d(x^2-x+1)/(x^2-x+1)
+(3/2)∫d(x-1/2)/[(x-1/2)^2+(√3/2)^2]
=(1/2)ln|x^2-x+1|+[(3/2)/(√3/2)]arctan[(x-1/2)/(√3/2)]+C
=(1/2)ln(x^2-x+1)+√3arctan[(2x-1)/√3]+C
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。