首页 > 留学知识库

问题: 动圆M与圆F1:(x+3)^2+y^2=4外切与圆F2:(x-3)^2+y^2=64内切,求M的轨迹

方程

解答:

圆F1:(x+3)^2+y^2=4, 圆心F1(-3,0), 半径R1=2
圆F2:(x-3)^2+y^2=64, 圆心F2(3,0), 半径R2=8
动圆圆心M(x,y), 半径r
|MF1| -R1 =R2 -|MF2| =r
|MF1| +|MF2| =R1 +R2 =10
==> M为以F1、F2为焦点的椭圆,2a=10,2c=6 ==> b=4
M的轨迹: x^2/25 +y^2/16 =1