问题: 题3
解答:
解:
(1)
`(x+y)(y+z)
=xz+yz+xy+y²
=xz+y(x+y+z)
≥2√[xz*y(x+y+z)]
=2
当xz=y(x+y+z)=1/xz,即xz=1时取得最小值2.
(2)
xyz(x+y+z)=1 => x+y+z=1/(xyz)
`(x+y)(y+z)
=[1/(xyz)-z][1/(xyz)-x)]
=[1/(xyz)]²-[1/(yz)+1/(xy)]+xz
=(x+y+z)[1/(xyz)]-[1/(yz)+1/(xy)]+xz
=1/(yz)+1/(xy)+1/(xz)-[1/yz-1/xy]+xz
=1/(xz)+(xz)
≥2
xz=1时,(x+y)(y+z)的最小值为2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。