首页 > 留学知识库

问题: 在数列{an}中,Sn是他的前n项和,且满足2Sn=(n+2)an-1,求an,求Tn=1/a1a3+1/a2a4+......+1/anan+2

解答:

在数列{an}中,Sn是他的前n项和,且满足2Sn=[(n+2)an]-1,求an,求Tn=1/a1a3+1/a2a4+......+1/ana(n+2)
解:
2a1=3a1-1 a1=1
2Sn=[(n+2)an]-1
2S(n-1)=[(n-1+2)a(n-1)]-1
2Sn-2S(n-1)=nan+2an-na(n-1)-a(n-1)=2an
an/a(n-1)=(n+1)/n
(a2/a1)×(a3/a2)×(a4/a3)×。。。。×[an/a(n-1)]
=(3/2)×(4/3)×(5/4)×。。。。。×(n+1/n)
=(n+1)/2=an/a1
an=2/(n+1) a2=2/3
1/an×a(n+2)=2[1/(n+1)-1/(n+3)]
Tn=1/a1a3+1/a2a4+。。。。+1/ana(n+2)
=2[1/a1-1/a3+1/a2-1/a4+1/a3-1/a5+1/a4-1/a6+。。。。。
+1/a(n-2)-1/an+1/a(n-1)-1/a(n+1)+1/an-1/a(n+2)]
=2[1/a1+1/a2-1/a(n+1)-1/a(n+2)]
=2+3-[(n+2)+(n+3)]
=5-2n-5=-2n