首页 > 留学知识库

问题: 图象交点问题

两个函数y=lnx和y=x-1的图象有几个交点?已知有1个,但我算来算去觉得有2个
以下是我的解,希望高手能指出错误
令f(x)=x-1-lnx,求导得f'(x)=1-1/x,
x=1时,两函数刚好交于一点
x>1时,导函数大于0,所以在(1,+∞)上单调递增,所以得x-1>lnx,所以在(1,+∞)无交点
0<x<1时,导函数小于0,所以函数在(0,1)上单调递减,所以x-1<lnx
因此在(0,1)因该还有个交点,这样就有两个了?

解答:

分析的有小问题。(1,+∞)上单调递增,f(x)>f(1)=0
同理 (0,1)上单调递减,f(x)>f(1)=0

所以都没有第2个交点。

参考文献:爱数学社区论坛 http://sohu0.5d6d.com