首页 > 留学知识库

问题: 求助

1.在三角形ABC中.a.b.c分别为角A.B.C.所对的边.如果a=4.b+c=5.
tanA+tanB-根号3*tanA*tanB+根号3=0.求A的正弦值

解答:

解:
tanA+tanB-(√3)*tanA*tanB+√3=0
(sinA/cosA)+sinB/cosB+(√3)[(cosAcosB/cosAcosB)-(sinAsinB/cosAcosB)]=0
[(sinAcosB+cosAsinB)/cosAcosB]+(√3)[(cosAcosB-sinAsinB)/cosAcosB)]=0
[sin(A+B)/cosAcosB]+[(√3)cos(A+B)/cosAcosB=0
∴sinC=√3cosC
tanC=√3 C=60°
a=2RsinA=4 b+c=2R(sinB+sinC)=5
c^=a^+(5-c)^-2a(5-c)cosC
c=7/2
a/sinA=c/sinC
sinA=(4√3)/7