三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠BAC=90°,AB=3,AC=4,AA1=4,M是BC的中点,(1)求证AB⊥A1C:(2)求证A1B∥平面AMC1(3)求三棱锥A1-AMC1的体积
(1)侧棱AA1⊥ABC--->AB⊥AA1
∠BAC=90°,即AB⊥AC--->AB⊥ACC1A1--->AB⊥A1C
(2)设AC1∩A1C=0,O为正方形ACC1A1的中心
--->OM是△A1BC的中位线--->A1B∥OM--->A1B∥AMC1
(3)V(A1-AMC1) = V(M-A1AC1)
= (1/3)S△A1AC1•d(M,A1AC1)
= (1/3)[(1/2)AA1•AC]•[(1/2)d(B,A1AC1)]
= (1/12)AA1•AC•AB
= (1/12)•3•4•4
= 4
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。