首页 > 留学知识库

问题: 数学

已知x,y,z属于R,且X+y+z=8,x^2+y^2+z^2=24,求证 4/3<=x<=3,4/3<=y<=3,4/3<=z<=3

解答:

已知x,y,z属于R,且X+y+z=8,x^2+y^2+z^2=24,求证 4/3<=x<=3,4/3<=y<=3,4/3<=z<=3.
证明 因为
x+y+z=8, (1)
x^2+y^2+z^2=24, (2)
将z=8-x-y代入(2)式整理为
x^2+y^2+xy-8x-8y+20=0 (3)
<==> y^2+(x-8)y+x^2-8x+20=0. (4)
y是实数,所以判别式Δ>=0,即
(x-8)^2-4(x^2-8x+20)>=0,
<==> 3x^2-16x+16=<0 (5)
解不等式(5)得:4/3<=x<=3.
同样方法可证: 4/3<=y<=3,4/3<=z<=3.