首页 > 留学知识库

问题: 解答题

设4cosAcosB=根号6,4sinSsinB=根号2,求(1-cos4A)(1-cos4B)?

解答:

4cosAcosB=√6,4sinAsinB=√2
--->cosAcosB=√6/4,sinAsinB=√2/2.
(1-cos4A)(1-cos4B)
={1-[1-2(sin2A)^2]}*{1-[1-2(sin2B)^2]}
=4(sin2A)^2*(sin2B)^2
=4(2sinAcosA)^2*(2sinBcosB)^2
=4*4(sinA)^2*(sinB)^2*4(cosA)^2*(cosB)^2
=16*(√6/4)^2*4(√2/4)^2
=16*6/16*4*2/16
=3