问题: 急求困难积分结果
这是一个复杂积分问题,见附件!!
解答:
I=∫{0→1}(1/(2-x))ln(1/x)dx
1.
I=-∫{0→1}(1/(2-x))lnxdx=(x=2u)
=-∫{0→1/2}(1/(2-2u))ln(2u)d(2u)=
=-∫{0→1/2}(1/(1-x))lnxdx-ln2∫{0→1/2}(1/(1-x))dx=
=-(ln2)^2-∫{0→1/2}(1/(1-x))lnxdx
2.
J=∫{0→1/2}(1/(1-x))lnxdx=
=∫{0→1}(1/(1-x))lnxdx-∫{1/2→1}(1/(1-x))lnxdx=
=∫{0→1}(1/(1-x))lnxdx-∫{1/2→0}(1/(u))ln(1-u)d(1-u)=
=∫{0→1}(1/(1-x))lnxdx-∫{0→1/2}(1/x)ln(1-x)dx=
=∫{0→1}(1/(1-x))lnxdx-∫{0→1/2}ln(1-x)dlnx
=∫{0→1}(1/(1-x))lnxdx-(ln2)^2-
-∫{0→1/2}lnx/(1-x)
==>
J=(1/2)∫{0→1}(1/(1-x))lnxdx-(1/2)(ln2)^2.
3.
易得:∫{0→1}(1/(1-x))lnxdx=-π^2/6(不需要我算吧?)
==>
I=-(ln2)^2-J=
=π^2/12-(1/2)(ln2)^2.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。