首页 > 留学知识库

问题: 急求困难积分结果

这是一个复杂积分问题,见附件!!

解答:

I=∫{0→1}(1/(2-x))ln(1/x)dx

1.
I=-∫{0→1}(1/(2-x))lnxdx=(x=2u)
=-∫{0→1/2}(1/(2-2u))ln(2u)d(2u)=
=-∫{0→1/2}(1/(1-x))lnxdx-ln2∫{0→1/2}(1/(1-x))dx=
=-(ln2)^2-∫{0→1/2}(1/(1-x))lnxdx

2.
J=∫{0→1/2}(1/(1-x))lnxdx=
=∫{0→1}(1/(1-x))lnxdx-∫{1/2→1}(1/(1-x))lnxdx=
=∫{0→1}(1/(1-x))lnxdx-∫{1/2→0}(1/(u))ln(1-u)d(1-u)=
=∫{0→1}(1/(1-x))lnxdx-∫{0→1/2}(1/x)ln(1-x)dx=
=∫{0→1}(1/(1-x))lnxdx-∫{0→1/2}ln(1-x)dlnx
=∫{0→1}(1/(1-x))lnxdx-(ln2)^2-
-∫{0→1/2}lnx/(1-x)
==>
J=(1/2)∫{0→1}(1/(1-x))lnxdx-(1/2)(ln2)^2.

3.
易得:∫{0→1}(1/(1-x))lnxdx=-π^2/6(不需要我算吧?)
==>
I=-(ln2)^2-J=
=π^2/12-(1/2)(ln2)^2.