问题: 高中极限
设等差数列(an),(bn)的前n项和分别是Sn,Tn且满足Sn/Tn=(3n+1)/(5n+2),则当n趋向于无穷大时,an/bn无限趋向于?
A,4/7 B,3/5 C,1/2 D,1
解答:
设等差数列{an},{bn}的前n项和分别是Sn,Tn,且满足Sn/Tn=(3n+1)/(5n+2),则当n→∞时,an/bn无限趋向于?
S(2n-1) = [a1+a(2n-1)]•(2n-1)/2 = an•(2n-1)
T(2n-1) = [b1+b(2n-1)]•(2n-1)/2 = bn•(2n-1)
--->an/bn = S(2n-1)/T(2n-1)
= [3(2n-1)+1]/[5(2n-1)+2] = (6n-2)/(10n-3)
n→∞时,an/bn = (6-2/n)/(10-3/n) = 3/5
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。