问题: 高一数学
已知圆锥底面半径为r,用平行于底面的平面截圆锥,截得的两部分的侧面积相等,则截面圆半径为多少?
解答:
答案是 “二分之根号二再乘以r”
圆锥的侧面积为扇形 截得两部分侧面积相等 即是上面小圆椎的侧面积为原来圆锥的一半 因为扇形面积等于“二分之一乘以半径平方再乘以圆心角度数" 所以再圆心角相等的情况下
扇形面积和其半径的平方成正比
因为上面小圆椎的侧面积为原圆锥的一半 所以上面小圆椎的母线长为原圆锥的 “二分之根号二”
由位似图形原理 知小圆椎低面半径为原圆锥的“二分之根号二”
这既是截面半径
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。