问题: 分式化简,急得很!!
x/(x^3+x^2y+xy^2+y^3)+y/(x^3-x^2y+xy^2-y^3)+
1/(x^2-y^2)-1/(x^2+y^2)-(x^2+3y^2)/(x^4+y^4)
解答:
x/(x³+x²y+xy²+y³) + y/(x³-x²y+xy²-y³) +
+ 1/(x²-y²) - 1/(x²+y²) - (x²+3y²)/(x^4+y^4)
= x/[(x+y)(x²+y²)] + y/[(x-y)(x²+y²)] +
+ 1/(x²-y²) - 1/(x²+y²) - (x²+3y²)/(x^4+y^4)
= [x(x-y)+y(x+y)]/[(x²-y²)(x²+y²)] +
+ 1/(x²-y²) - 1/(x²+y²) - (x²+3y²)/(x^4+y^4)
= [x²+y²]/[(x²-y²)(x²+y²)] + 1/(x²-y²) -
- 1/(x²+y²) - (x²+3y²)/(x^4+y^4)
= 2/(x²-y²) - 1/(x²+y²)-(x²+3y²)/(x^4+y^4)
= [2(x²+y²)-(x²-y²)]/[(x²-y²)(x²+y²)] - (x²+3y²)/(x^4+y^4)
= (x²+3y²)/(x^4-y^4) - (x²+3y²)/(x^4+y^4)
= 2y^4•(x²+3y²)/(x^8-y^8)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。