首页 > 留学知识库

问题: 问一个单调递减区间

07.12.19/3
函数f(z)=x^3-3x^2+1的单调递减区间是?

解答:

1.
设y,x在f(z)=x^3-3x^2+1的单调递减区间I中,
且y<x.
==>
x^3-3x^2+1≤y^3-3y^2+1
==>
(x-y)[x^2+xy+y^2-3(x+y)]≤0
==>
x^2+xy+y^2-3(x+y)≤0.
由于在区间I中的所有y<x时,都满足上面不等式.
所以y=x时,也满足上面不等式(极限的思想).
==>
3x^2-6x≤0.
==>
0≤x≤2.

2.
还需验证:0≤y<x≤2时
x^3-3x^2+1<y^3-3y^2+1
<==>
x^2+xy+y^2-3(x+y)<0.

ⅰ.
当0≤x-y≤1
x^2+xy+y^2-3(x+y)=
=(x-y)^2+3xy-3(x+y)≤(x-y)+3xy-3(x+y)=
=x(y-2)+2y(x-2)<0

ⅱ.
当1<x-y
==>
0≤y<1<x≤2==>x+y-3<0
x^2+xy+y^2-3(x+y)=
=x(x-3)+y(x+y-3)<0

所以[0,2]为f(x)=x^3-3x^2+1的单调递减区间.