首页 > 留学知识库

问题: 紧急求助:高一数学题.只有一小时

1)log(2) 3 =a,log(3) 7 =b,用a,b 表示log(42) 56.
括号内为底数,下同

(2)log(a) M+log(b) N=log(a) N+log(b) M,求证 :a=b , 或 M=N

解答:

1)log(2) 3 =a,log(3) 7 =b,
log(42) 56=[lg56]/[lg42]=[lg7]*[lg8]/[lg2][lg3][lg7]
={[lg7]/[lg3]}*{[lg8]/[lg2]}=log(3)7*log(2)8=3b.
括号内为底数,下同

(2)log(a) M+log(b) N=log(a) N+log(b) M,
log(a)M-log(a)N=log(b)M-log(b)N
log(a)(M/N)=log(b)(M/N)--------a=b;
log(a)M-log(b)M=log(a)N-log(b)N----log(a/b)M=log(a/b)N---M=N
因此:a=b , 或 M=N