问题: 一道数列题
数列a,b,c,d的前三项成等比数列,公比为t,后三项成等差数列,公差也为t,若这个数列各项的和为13,求a,b,c,d。
能否有简便的方法?
解答:
当公比为1时,a=b=c,所以公差c-b=0,不等于1,所以公比不为1。
令a=b/t,c=bt,d=bt+t,所以得 bt-b=t.b=t/(t-1).代入acd得,a=1/(t-1),b=t/(t-1),c=t^2/(t-1),d=t^2/(t-1)+t.
相加得(3t^2+1)/(t-1)=13
(3t-7)(t-2)=0解得t=2或7/3
所以b=2 或7/4。
a=1,b=2,c=4,d=6
或a=3/4,b=7/4,c=49/12,d=77/12
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。