首页 > 留学知识库

问题: 几何-5

几何
在△ABC中,∠ABC=50°,∠ACB=30°,Q为形内一点,且∠QAB=∠QCA=20°,求∠QBC=?

解答:

作Q关于BC的对称点E,连BE,CE,DE
延长BA到D,使AD=AQ,连CD,ED

∠ABC=50,∠ACB=30==>∠BAC=100
∠QAB=∠QCA=20==>∠QAC=∠AQC=80
==>CA=CQ
∠DAC=180-∠BAC=80=∠AQC
AD=AQ
AC=AC
==>△ADC≌△AQC
==>CD=CQ=CA,∠ACD=∠ACQ=20,∠DBC=∠DCB=50
==>BD=CD

∠QCB=∠ECB=∠ACB-∠QCA=10
==>∠ECD=∠ECB+∠ACB+∠ACD=10+30+20=60
CE=CQ=CD
==>△DCE为正三角形
==>∠EDC=60
==>∠BDE=20=∠QCE
BD=DE=CE=CQ
==>△BDE≌△QCE
==>BE=QE
BQ=BE
==>△BQE为正三角形
==>∠QBE=60
==>∠QBC=30