如图,等腰直角三角形ABC,E,F在BC上,不妨设F在E右侧
将△AFC旋转90度到△ADB
∠ABC=∠ACB=∠ABD=45==>∠DBE=90
BD=CF
==>BE^2+CF^2=BE^2+BD^2=DE^2
DE^2=AD^2+AE^2-2AD*AE*cos∠DAE
EF^2=AF^2+AE^2-2AF*AE*cos∠EAF
AD=AF
DE^2-EF^2=2AF*AE(cos∠EAF-cos∠DAE)
∠DAE=∠DAB+∠BAE=∠CAF+∠BAE=90-∠EAF
(1)∠EAF≤45°,则90°>∠DAE≥∠EAF>0°,
DE^2-EF^2=2AF*AE(cos∠EAF-cos∠DAE)≥0
DE^2≥EF^2
BE^2+CF^2≥EF^2
(2)∠EAF≥45°,则0°<∠DAE≤∠EAF<90°,
DE^2-EF^2=2AF*AE(cos∠EAF-cos∠DAE)≤0
DE^2≤EF^2
BE^2+CF^2≤EF^2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。