首页 > 留学知识库

问题: 三角函数

已知三角形ABC中,2*根号2(sin^2A-sin^2C)=(a-b)sinB,三角形ABC的外接圆半径为根号2
1,求角C
2,求三角形的面积的最大直

解答:

已知△ABC中,2√2(sin²A-sin²C)=(a-b)sinB,△ABC外接圆半径为√2。1,求∠C;2,求三角形的面积的最大值

2√2(sin²A-sin²C) = (a-b)sinB
--->2√2(a²-c²)/(2R)² = (a-b)•b/(2R)
--->a²-c²=ab-b²
--->a²+b²-c²=ab
--->cosC = (a²+b²-c²)/(2ab) = 1/2---->C=60°

SΔ = (1/2)absinC = (2R²)sinAsinBsinC
  = R²[cos(A-B)-cos(A+B)]sinC
  = R²[cos(A-B)-cos120°]sin60°
  = √3[cos(A-B)+1/2]
  ≤3√3/2
--->A=B即△ABC为等边三角形时,面积的最大值=3√3/2