首页 > 留学知识库

问题: 证明

sin3x·sin^3 x+cos3x·cos^3 x=cos^3 2x

解答:

左边= sin 3x*(sin x)^3 + cos 3x*(cos x)^3
= [3sinx - 4(sinx)^3]*(sin x)^3 + [4(cos x)^3 - 3cos x]*(cos x)^3
= 3(sin x)^4 - 4(sin x)^6 + 4(cos x)^6 - 3(cos x)^4
右边 = (cos 2x)^3
= (2(cos x)^2 - 1)^3
= 8(cos x)^6 - 12(cos x)^4 + 6(cos x)^2 - 1
因为(sin x)^2 = 1 - (cos x)^2
所以(sin x)^6 = (1 - (cos x)^2)^3
(sin x)^4 = (1 - (cos x)^2)^2

自己换算一下啦!