问题: 高中数学---数列
求M的范围,N取任意正整数.
M
———————————————————≥1/√2N+3
(1+1/3)(1+1/5)……[1+1/(2N+1)]
解答:
的确不等号反向后容易做:
n∈N,M/{(1+1/3)(1+1/5)...[1+1/(2n+1)]}≤1/√(2n+3),求M的范围
M/{(1+1/3)(1+1/5)...[1+1/(2n+1)]}≤1/√(2n+3)
--->M≤(1+1/3)(1+1/5)...[1+1/(2n+1)]/√(2n+3)=f(n)恒成立
--->M的最大值即为f(n)的最小值
f(n+1) = (1+1/3)...[1+1/(2n+1)][1+1/(2n+3)]/√(2n+5)
--->f(n+1)/f(n) = [1+1/(2n+3)]√(2n+3)/√(2n+5)
= (2n+4)/√[(2n+3)(2n+5)]
= (2n+4)/√[(2n+4)²-1]
= 1/√[1-1/(2n+4)²] > 1
又f(n)>0--->f(n+1)>f(n)--->f(n)单调增
--->M≤f(1)=[1+1/3]/√3=4√3/9
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。