问题: 高一数学5
在三角形ABC中 A=60° b=1 S△ABC=3^0.5
a+b+c/sinA+sinB+sinC =?
解答:
在△ABC中 A=60° b=1 S△ABC=√3,求:(a+b+c)/(sinA+sinB+sinC)=?
(a+b+c)/(sinA+sinB+sinC)=2R
SΔ=(1/2)bcsinA--->c=2SΔ/(bsinA)=4
--->a²=b²+c²-2bccosA=13
--->(a+b+c)/(sinA+sinB+sinC) = 2R = a/sinA = √13/(√3/2) =2√39/3
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。