问题: 高一数学
Cosx+cos(x+∏/3)的最大值
Sin(x-∏/6)cosx的最小值
Arctan1/3+arctan1/2=
Y=sin(∏/3-2x)+cos2x的最小正周期
解答:
Cosx+cos(x+∏/3)的最大值
Cosx+cos(x+∏/3)=cosx+[cosxcos(π/3)-sinxsin(π/3)
=(3cosx/2)-(√3/2)sinx
=√3[cosxcosy-sinxsiny] tany=(√3)/3
=(√3)cos(x+y)
-1≤cos(x+y)≤1
∴[Cosx+cos(x+∏/3)]max=√3
Sin(x-∏/6)cosx的最小值
Sin(x-∏/6)cosx=[sinxcos(π/6)-cosxsin(π/6)]cosx
=[(√3/2)sinx-(cosx/2)]cosx
=(√3/2)sinxcosx-[(cosx)^/2)]
=(√3/4)sin2x-(1/4)[cos2x+1]
=(√3/4)sin2x-(1/4)cos2x-(1/4)
=(1/2)[(√3/2)sin2x-(1/2)cos2x]-(1/4)
=(1/2)[sin2xcos(π/6)-cos2xsin(π/6)]-(1/4)
=(1/2)sin[2x-(π/6)]-1/4
-1≤sin[2x-(π/6)]≤1
[Sin(x-∏/6)cosx]min=-3/4
解二:用积化和差公式
Sin(x-∏/6)cosx
=(1/2){sin[2x-(π/6)+x]+sin[2x-(π/6)-x]
=(1/2)[sin(2x-(π/6)+sin(-π/6)]
=(1/2)sin[2x-(π/6)]-1/4
Arctan1/3+arctan1/2=
tan[Arctan1/3+arctan1/2]
=(tanArctan1/3+tanarctan1/2)/(1-tanArctan1/3tanarctan1/2)
=[(1/3)+(1/2)]/[1-(1/3)(1/2)]
=1
Arctan1/3+arctan1/2= arctan1=45°
Y=sin(∏/3-2x)+cos2x的最小正周期
=sin[(π/2)-(π/6)-2x]+cos2x
=cos[(π/6)+2x]+cos2x
=2cos{[(π/6)+2x+2x]/2]cos{[(π/6)+2x-2x]/2]
=2cos[2x+(π/12)]cos(π/12)
最小正周期T=2π/2=π
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。