首页 > 留学知识库

问题: 三角函数

在锐角三角形ABC中,sinA=(2根号2)/3,求sin²((B+C)/2)+cos(3pi-2A)的值.

解答:

{sin[(B+C)/2]}^2+cos(3pi-2A)
=[1-cos(B+C)]/2+cos(pi-2A)
=(1+cosA)/2-cos2A
=2(sinA)^2-1+(1/2)√[1-(sinA)^2]+1/2
=2(2√2/3)^2+(1/2)√[1-(2√2/3)^2]-1/2
=16/9+(1/2)√(1-8/9)-1/2
=16/9+1/6-1/2
=14/9.