问题: 数学高考难题请求帮助!
一轮复习数学试卷
设函数f(x)=2(x次方)+a•2(负x次方)-1(a为实数)
(1) 当a=1时,求函数F(x)=f(x)-1的零点;
(2) 当a<0时,判断函数y=f(x)在区间(-∞,+∞)上的单调性,并用单调性定义加以证明。
请写出解题过程,以利于理解。谢谢!
解答:
(1)
函数f(x)=2(x次方)+a•2(负x次方)-1(a为实数)当a=1时,有:
f(x)=2(x次方)+2(负x次方)-1
那么,F(x)=f(x)-1
=2(x次方)+2(负x次方)-2
因为2(x次方)+2(负x次方)≥2,所以函数F(x)=f(x)-1的零点是当且仅当:
2(x次方)=2(负x次方)时取得
则:x=0
(2) 当a<0时,判断函数y=f(x)在区间(-∞,+∞)上的单调性,并用单调性定义加以证明
函数的定义域为R,令:x1<x2∈R
则:
f(x1)-f(x2)=2^x1+a*2^(-x1)-1-[2^x2+a*2^(-x2)-1]
=(2^x1-2^x2)+a*[2^(-x1)-2^(-x2)]
=(2^x1-2^x2)+a*[(2^x2-2^x1)/2^(x1+x2)]
=(2^x1-2^x2)*[1-a/2^(x1+x2)]
因为函数y=2^x为增函数,且其值域为y>0,所以上式中:
(2^x1-2^x2)>0
2^(x1+x2)>0
而,已知:a<0
所以,f(x1)-f(x2)>0
即,f(x1)>f(x2)
所以,函数y=f(x)为增函数。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。