首页 > 留学知识库

问题: 数列问题

已知等差数列{an}首项和等比数列{bn}的首项相等,公差和公比都是d,又知d不等于1,且a4=b4,a10=b10
(1)求a1和d (2)判断b16是否为{an}中的项

解答:

解:
a4=a1+3d
b4=b1*d^3=a1*d^3
a10=a1+9d
b10=b1*d^9=a1*d^9
a4=b4,即a1+3d=a1*d^3.........(1)
a10=b10,即a1+9d=a1*d^9..........(2)
(1)/(2),得
(a1+3d)/(a1+9d)=1/d^6..........(3)
(1)式两边平方可得1/d^6=a1^2/(a1^2+6a1d+9d^2)
所以(a1+3d)/(a1+9d)=a1^2/(a1^2+6a1d+9d^2)
整理得:
a1=-d
代入(1)得a1=2^(1/3),d=-2^(1/3)

(2)
b16=b1*d^15=a1*d^15=2^(1/3)*(-2^5)=-2^(16/3)
an=a1+(n-1)d=2^(1/3)+(n-1)(-2^(1/3))
令b16=an
2^(1/3)+(n-1)(-2^(1/3))=-2^(16/3)
解得n=34
所以b16=a34,即b16是{an}中的项