首页 > 留学知识库

问题: 求证:[1-(sinα)^6-(cosα)^6]/[1-(sinα)^4-(cosα)^4]=3/2

解答:

1-(sinα)^6-(cosα)^6
=1-sin^6α-cos^6α
= sin^2α(1-sin^4α) + cos^2α(1-cos^4α)
= sin^2α[sin^2α(1-sin^2α) + cos^2α] + cos^2α[cos^2α(1-cos^2α)+sin^2α]
=sin^2α*cos^2α*(1+sin^2α) + sin^2α*cos^2α*(1+cos^2α)
=sin^2α*cos^2α*(1+1+sin^2α+cos^2α)
=3sin^2α*cos^2α

1-(sinα)^4-(cosα)^4
=sin^4α-sin^4α
=2sin^2α*(1-sin^2α)
=2sin^2α*cos^2α

两个相除即为3/2