问题: 求证:[1-(sinα)^6-(cosα)^6]/[1-(sinα)^4-(cosα)^4]=3/2
解答:
1-(sinα)^6-(cosα)^6
=1-sin^6α-cos^6α
= sin^2α(1-sin^4α) + cos^2α(1-cos^4α)
= sin^2α[sin^2α(1-sin^2α) + cos^2α] + cos^2α[cos^2α(1-cos^2α)+sin^2α]
=sin^2α*cos^2α*(1+sin^2α) + sin^2α*cos^2α*(1+cos^2α)
=sin^2α*cos^2α*(1+1+sin^2α+cos^2α)
=3sin^2α*cos^2α
1-(sinα)^4-(cosα)^4
=sin^4α-sin^4α
=2sin^2α*(1-sin^2α)
=2sin^2α*cos^2α
两个相除即为3/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。