问题: 求证:[1-(sinα)^6-(cosα)^6]/[1-(sinα)^4-(cosα)^4]=3/2
[1-(sinα)^6-(cosα)^6]/[1-(sinα)^4-(cosα)^4]={[(sinα)^2+(cosα)^2]^3-(sinα)^6-(cosα)^6}/{[(sinα)^2+(cosα)^2]^2-(sinα)^4-(cosα)^4}
然后怎么做?
解答:
[(sinα)^2+(cosα)^2]^3=(sinα)^6+3(sinα)^4(cosα)^2+3(sinα)^2(cosα)^4+(cosα)^6
所以分子就是:3(sinα)^4(cosα)^2+3(sinα)^2(cosα)^4=3[(sinα)^2(cosα)^2]
分母:2[(sinα)^2(cosα)^2]
所以原式=3/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。