首页 > 留学知识库

问题: 求证:[1-(sinα)^6-(cosα)^6]/[1-(sinα)^4-(cosα)^4]=3/2

[1-(sinα)^6-(cosα)^6]/[1-(sinα)^4-(cosα)^4]={[(sinα)^2+(cosα)^2]^3-(sinα)^6-(cosα)^6}/{[(sinα)^2+(cosα)^2]^2-(sinα)^4-(cosα)^4}
然后怎么做?

解答:

[(sinα)^2+(cosα)^2]^3=(sinα)^6+3(sinα)^4(cosα)^2+3(sinα)^2(cosα)^4+(cosα)^6
所以分子就是:3(sinα)^4(cosα)^2+3(sinα)^2(cosα)^4=3[(sinα)^2(cosα)^2]
分母:2[(sinα)^2(cosα)^2]
所以原式=3/2