问题: 已知a b c是互不相等的正数 求证
已知a b c是互不相等的正数 求证
(2/a+b)+(2/b+c)+(2/c+a)>(9/a+b+c)
解答:
已知a b c是互不相等的正数 求证
2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)
证明 如果了解柯西不等式,那么很简单
(a+b+b+c+c+a)*[1/(a+b)+1/(b+c)+1/(c+a)]>9
<==> 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c).
附证 设2x=a+b,2y=b+c,2z=c+a,则所证不等式等价于
1/x+1/y+1/z>9/(x+y+z)
<==> (x+y+z)/x+(x+y+z)/y+(x+y+z)/z>9
<==> y/x+z/x+x/y+z/y+x/z+y/z>6
<==> (y/x+x/y)+(z/x+x/z)+(y/z+z/y)>6.
因为 y/x+x/y>2,z/x+x/z>2,y/z+z/y>2.
所以上式显然成立.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。