问题: 三角形
如图,在△ABC中,AB=AC,E为CA延长线上的一点, ED⊥BC于D交AB于F。求证:△AEF为等腰三角形。
解答:
证明:角E+角C=90度 而AB=AC,所以角B=角C
所以角E+角B=90度,且角BFD+角B=90度
所以角E=角BFD=角AFE 即AF=AE
所以三角形AEF是等腰三角形
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。