问题: 高一数学题
不等式ax^2+bx+c>0的解集为{x∣2<x<3},则不等式ax^2-bx+c>0的解集为______
过程及答案,谢谢
解答:
ax^2+bx+c>0解集的交界点是ax^2+bx+c=0的解
所以ax^2+bx+c=0的解为x1=2,x2=3
并且开口向下a<0
韦达定理
-b/a=2+3=5
c/a=2*3=6
不等式ax^2-bx+c>0的解集仍为交界点
-b'/a'=b/a=-5
c/a=6
x1+x2=-5
x1*x2=6
x2=-5-x1
(-5-x1)x1=6
可解得x1=-3,x2=-2
x1=-2,x2=-3
同理
a<0闭集合
答案是{x∣-3<x<-2}
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。