首页 > 留学知识库

问题: 高二 不等式

若x>,y>0,则x^3+y^3与x^2y+xy^2的大小

解答:

x^3+y^3=(x+y)*(x^2-xy+y^2)
x^2y+xy^2=xy(x+y)
(x+y)*(x^2-xy+y^2)-xy(x+y)
=(x+y)*(x^2-xy+y^2-xy)
=(x+y)*(x-y)^2
因为x>,y>0,所以(x+y)*(x-y)^2大于0,
即x^3+y^3大于x^2y+xy^2