首页 > 留学知识库

问题: 有關于特殊數列

1/1 + 1/2 +1/3 +.. +1/n =r
則3/(1*2) + 4/(2*3) + 5/(3*4) +.. + n-1/(n-1)n
用n和r表示

答案係1 + r - (2/n),請給我一個詳細過程,謝謝

解答:

解:3/(1*2)+4/(2*3)+5/(3*4)+…+(n+1)/(n-1)n
=(1+2)/(1*2)+(2+2)/(2*3)+(3+2)/(3*4)+…+[(n-1)+2]/(n-1)n
=1/2+1/3+…+1/n+2/(1*2)+2/(2*3)+2/(3*4)+…+2/(n-1)n
=1+1/2+1/3+…+1/n+2/(1*2)-1+
2[1/(1*2)+1/(2*3)+1/(3*4)+…+1/(n-1)n]
=r-1+2[(1-1/2)+(1/2-1/3)+(1/3)-(1/4)+…+1/(n-1)-1/n]
=r+2(1-1/n)-1
=1+r-2/n