首页 > 留学知识库

问题: 已知an=1/(2n-7)(2n-5)的前n项和是Sn,

已知an=1/(2n-7)(2n-5)的前n项和是Sn,
求证{5/(10Sn +1)}为等差数列

解答:

an=1/2*[1/(2n-7)-1/(2n-5)]
Sn=1/2*[1/(-5)-1/(-1)+1/(-1)-……+1/(2n-7)-1/(2n-5)]
=1/2[(-1/5-1/(2n-5)]
∴5/(10Sn +1)=5/[-1-10/(4n-10)+1]=-2n+5
∴{5/(10Sn +1)}是以3为首项,-2为公差的等差数列