首页 > 留学知识库

问题: 高中三角比题1

1.已知sina+cosa=7/5,且tga>1,求cosa的值
2.求函数y=√3*sinx/(2-cosx)的值域

解答:

1. sina+cosa=7/5 ==> sina = 7/5 - cosa ==> 1-(cosa)^2 = (7/5 - cosa)^2
==> cosa = 3/5,4/5 ==> sina = 4/5,3/5
tga > 1
==> cosa = 3/5
2. y=√3*sinx/(2-cosx)
= √3*2sin(x/2)cos(x/2)/{2*[sin(x/2)]^2+2*[cos(x/2)]^2+[cos(x/2)]^2-[cos(x/2)]^2}
= 2√3*tg(x/2)/{1 + 3*[tg(x/2)]^2}
令A = tg(x/2): 3yA^2 - 2√3*A + y = 0
==> (- 2√3*)^2 >= 4*(3y)*y
==> -1 <= y <= 1
值域: -1 <= y <= 1