问题: 高中三角比题1
1.已知sina+cosa=7/5,且tga>1,求cosa的值
2.求函数y=√3*sinx/(2-cosx)的值域
解答:
1. sina+cosa=7/5 ==> sina = 7/5 - cosa ==> 1-(cosa)^2 = (7/5 - cosa)^2
==> cosa = 3/5,4/5 ==> sina = 4/5,3/5
tga > 1
==> cosa = 3/5
2. y=√3*sinx/(2-cosx)
= √3*2sin(x/2)cos(x/2)/{2*[sin(x/2)]^2+2*[cos(x/2)]^2+[cos(x/2)]^2-[cos(x/2)]^2}
= 2√3*tg(x/2)/{1 + 3*[tg(x/2)]^2}
令A = tg(x/2): 3yA^2 - 2√3*A + y = 0
==> (- 2√3*)^2 >= 4*(3y)*y
==> -1 <= y <= 1
值域: -1 <= y <= 1
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。