首页 > 留学知识库

问题: f(x)=logm^(x/a)乘以logm^(x/b) m是底数

已知a,b是不相等的正常数,X为自变量,f(x)=logm^(x/a)*logm^(x/b)的最小值为-1/4,则m与a,b的表达式是

解答:

f(x) = logm_(x/a)*logm_(x/b)
   = (logm_x-logm_a)(logm_x-logm_b)
   = (logm_x)²-(logm_a+logm_b)logm_x+logm_alogm_b
   = (logm_x)²-logm_(ab)logm_x+logm_alogm_b
   = [logm_x-logm_√(ab)]²+logm_alogm_b-[logm_√(ab)]²
   ≥ logm_alogm_b-[logm_√(ab)]² = -1/4
--->4logm_alogm_b-[logm_a+logm_b]² = -1
--->(logm_a-logm_b)² = 1
--->logm_(a/b) = ±1
--->a=bm或b=am