首页 > 留学知识库

问题: 已知数列{an}满足a1=1,an=[a(n-1)]/[3a(n-1)+1]

已知数列{an}满足a1=1,an=[a(n-1)]/[3a(n-1)+1](n>=2,n属于N*)
1. 求助数列{1/an}为等差数列;
2. 求数列{an}的通项公式;
3. 设bn=ana(n+1),求数列{bn}的前n项和Sn

注: n,n-1,n+1 都为下标

解答:

An=[A(n-1)]/[3A(n-1)+1]
==> 1/An =3 +1/A(n-1)
==> {1/an}为等差数列, 首项 =1/A1 =1, 公差 =3
1/An =1/A1 +3(n-1) =3n-2
==> An =1/(3n-2)
Bn =An*A(n+1) =1/(3n-2)(3n+1) =[1/(3n-2) -1/(3n+1)]/3
==> Sn =[1 -1/(3n+1)]/3 = n/(3n+1)