问题: 已知数列{an}满足a1=1,an=[a(n-1)]/[3a(n-1)+1]
已知数列{an}满足a1=1,an=[a(n-1)]/[3a(n-1)+1](n>=2,n属于N*)
1. 求助数列{1/an}为等差数列;
2. 求数列{an}的通项公式;
3. 设bn=ana(n+1),求数列{bn}的前n项和Sn
注: n,n-1,n+1 都为下标
解答:
An=[A(n-1)]/[3A(n-1)+1]
==> 1/An =3 +1/A(n-1)
==> {1/an}为等差数列, 首项 =1/A1 =1, 公差 =3
1/An =1/A1 +3(n-1) =3n-2
==> An =1/(3n-2)
Bn =An*A(n+1) =1/(3n-2)(3n+1) =[1/(3n-2) -1/(3n+1)]/3
==> Sn =[1 -1/(3n+1)]/3 = n/(3n+1)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。