问题: 在三角形ABC中,b^2+c^2-bc=a^2,c/b=1/2+根号3,求tanB
求解
解答:
b^2+c^2-bc=a^2
由余弦定理得:
b^2+c^2-a^2=2bccosA
所以cosA=1/2
A=60度
由正弦定理得:
c/b=sinC/sinB=1/2+√3
sinC=sinB(1/2+√3)
sin(A+B)=sinB(1/2+√3)
sin(60+B)=sinB(1/2+√3)
√3/2cosB+1/2sinB=1/2sinB+√3sinB
√3/2cosB=√3sinB
tanB=1/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。