首页 > 留学知识库

问题: 在三角形ABC中,b^2+c^2-bc=a^2,c/b=1/2+根号3,求tanB

求解

解答:

b^2+c^2-bc=a^2
由余弦定理得:
b^2+c^2-a^2=2bccosA
所以cosA=1/2
A=60度

由正弦定理得:
c/b=sinC/sinB=1/2+√3
sinC=sinB(1/2+√3)
sin(A+B)=sinB(1/2+√3)
sin(60+B)=sinB(1/2+√3)
√3/2cosB+1/2sinB=1/2sinB+√3sinB
√3/2cosB=√3sinB
tanB=1/2