首页 > 留学知识库

问题: 分式

试证:对任意的正整数n,有1/1*2*3+1/2*3*4+...+1/n(n+1)(n+2)<1/4

解答:

1/1*2*3+1/2*3*4+……1/n(n+1)(n+2)

=1/2(1/1*2-1/2*3)+1/2(1/2*3-1/3*4)+...+1/2[1/n(n+1)-1/(n+1)(n+2)]

=1/2[1/1*2-1/2*3+1/2*3-1/3*4+...+1/n(n+1)-1/(n+1)(n+2)]

=1/2[1/1*2-1/(n+1)(n+2)]

=1/2*[(n+1)(n+2)-2]/2(n+1)(n+2)

=(n^2+3n)/4(n+1)(n+2)

=n(n+3)/[4(n+1)(n+2)]

=0.25*n(n+3)/[(n+1)(n+2)]

n(n+3)/[(n+1)(n+2)]=(n^2+3n)/(n^2+3n+2)<1
1/1*2*3+1/2*3*4+……1/n(n+1)(n+2) <0.25=1/4