首页 > 留学知识库

问题: 高二数列

设数列{an}的前n项和为Sn满足Sn/n=3n-2.
(1)求数列{an}的通项公式;
(2)设bn=3/[ana(n+1)],Tn是数列{bn}的前n项和,求使得Tn<m/20n对所有n∈N+都成立的最小正整数m.

解答:

Sn =3n²-2n
S(n-1) =3(n-1)²-2(n-1)
an =Sn-S(n-1) =6n-5

bn =3/(6n-5)(6n+1) =1/2[ 1/(6n-5) -1/(6n+1)]

Tn =1/2[1 - 1/7 +1/7 -1/13 +1/13 -......-1/(6n+1)]
= 1/2 - 1/(12n+2)

后面是啥子,看清了
1/2 - 1/(12n+2) < m/20
==>m > 10 -10/(6n+1)
对所有n∈N+都成立
最小正整数m=10