问题: 在△ABC中,A=60°,BC=3,则△ABC的周长为多少?
在△ABC中,A=60°,BC=3,则△ABC的周长为多少?
(用B表示)
请位高手 帮帮忙!谢谢!
解答:
由正弦定理,有
BC/sinA=AC/sinB=AB/sinC
得AC=BCsinB/sinA=3sinB/sin60°=3sinB/(√3/2)=2√3sinB
AB=BCsinC/sinA=BCsin[180°-(A+B)]/sinA=3sin(60°+B)/sin60°
=(3sin60°cosB+3sinBcos60°)/sin60°
=3cosB+3sinBcot60°
=3cosB+√3sinB
AB+BC+AC=3cosB+√3sinB+3+2√3sinB=3√3sinB+3cosB+3
ΔABC的周长是3√3sinB+3cosB+3
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。