首页 > 留学知识库

问题: 高二数列2

数列{an}的前n项和为Sn,且a1=1,a(n+1)=Sn/3,n=1,2,3,…,求:
(1)a2,a3,a4的值及数列{an}的通项公式;
(2)a2+a4+a6+…+a2n的值.

解答:

a(n+1)=Sn/3, an=S(n-1)/3
==> a(n+1)-an=[Sn-S(n-1)]/3 =an/3, a(n+1)/an =4/3
==> a2 =4/3, a3=(4/3)^2=16/9, a4=(4/3)^3 =64/27
an =(4/3)^(n-1)
a2+a4+a6+…+a2n =a2*[1-(16/9)^n]/(1-16/9)
= (12/7)[(4/3)^2n -1]