首页 > 留学知识库

问题: 高二数列4

图中第20题~看不清楚的单击图片放大哦^^

解答:

a1=1, S2=a1+a2=4a1+2--->a2=5

S(n+1) = 4an+2
Sn = 4a(n-1)+2
相减:S(n+1)-Sn = a(n+1) = 4an-4a(n-1)
--->a(n+1)-2an = 2[an-2a(n-1)]
--->{a(n+1)-2an}是首项=a2-2a1=3、公比为2的等比数列
--->a(n+1)-2an = 3•2^(n-1)
--->a(n+1)/2^n - an/2^(n-1) = 3/2
--->{an/2^(n-1)}是首项=a1/2^0=1、公差为3/2的等差数列
--->an/2^(n-1) = 1+(3/2)(n-1) = (3n-1)/2
--->an = (3n-1)•2^(n-2)

Sn = 2/2+5•1+8•2+11•4+...+(3n-1)•2^(n-2)
--->2Sn =2•1+5•2+ 8•4+...+(3n-4)•2^(n-2)+(3n-1)•2^(n-1)
相减:Sn = (3n-1)•2^(n-1) - 1 - 3[1+2+4+...+2^(n-2)]
     = (3n-1)•2^(n-1) - 1 - 3[2^(n-1)-1]
     = (3n-4)•2^(n-1) + 2