问题: 高中不等式
设a,b,c是△ABC的三边,S表示其面积。求证:
(1) c^2-a^2-b^2+4ac>=4√3S.
解答:
证明 根据三角形余弦定理与面积公式得:
c^2-a^2-b^2+4ac=4ac-2ac*cosB;
4√3S=2√3*ac*sinB.
则4ac-2ac*cosB-2√3*ac*sinB
=2ac[2-cosB-√3*sinB]
=4ac[1-sin(30°+B)]>=0.证毕。
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。