首页 > 留学知识库

问题: 三角难题

已知sinx+siny+sinz=0, cosx+cosy+cosz=0,求证:
sin(2x)+sin(2y)+sin(2z)=0.

解答:

证明 设A(sinX,cosX), B(sinY,cosY), C(sinZ,cosZ)是圆方程:
x^2+y^2=1上三点,圆心O为(0,0),它是ΔABC的外心,又由已知条件
(sinX+sinY+sinZ)/3=0;
(cosX+cosY+cosZ)/3=0.
所以O(0,0)又是ΔABC的重心,从而知ΔABC是正三角形。角X,Y,Z依次相差2π/3.于是
sin(2X)+sin(2Y)+sin(2Z)=sin(2X)+sin(2X+4π/3)+sin(2X+8π/3)
=sin(2X)+sin(2X-2π/3)+sin(2X+2π/3)
=sin(2X)+2sin(2X)*cos(-2π/3)
=sin(2X)-sin(2X)=0.证毕.