问题: 数列求和
[1/(n^2+n+1)]+[2/(n^2+n+2)]+[3/(n^2+n+3)]+....+[n/(n^2+n+n)]=?
n^2意思是n的平方
解答:
1 [1/(n^2+n+1)]+[2/(n^2+n+2)]+[3/(n^2+n+3)]+....+[n/(n^2+n+n)] = A
2 [1/(n^2+n)]+[2/(n^2+n)]+[3/(n^2+n)]+....+[n/(n^2+n)] = B
3 [1/(n^2+n+n)]+[2/(n^2+n+n)]+[3/(n^2+n+n)]+....+[n/(n^2+n+n)] = C
A < B = ( (n+1)n/2 )/ (n^2+n) = 1/2
A > C = ( (n+1)n/2 )/ (n^2+2n) = (n+1)/(n+2)/2
根据极限得出,N无穷大时,A = 1/2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。