首页 > 留学知识库

问题: 数列求和

[1/(n^2+n+1)]+[2/(n^2+n+2)]+[3/(n^2+n+3)]+....+[n/(n^2+n+n)]=?


n^2意思是n的平方

解答:

1 [1/(n^2+n+1)]+[2/(n^2+n+2)]+[3/(n^2+n+3)]+....+[n/(n^2+n+n)] = A
2 [1/(n^2+n)]+[2/(n^2+n)]+[3/(n^2+n)]+....+[n/(n^2+n)] = B
3 [1/(n^2+n+n)]+[2/(n^2+n+n)]+[3/(n^2+n+n)]+....+[n/(n^2+n+n)] = C

A < B = ( (n+1)n/2 )/ (n^2+n) = 1/2
A > C = ( (n+1)n/2 )/ (n^2+2n) = (n+1)/(n+2)/2
根据极限得出,N无穷大时,A = 1/2